Correct Arrow Length

Measuring and Cutting Shafts Correct Arrow Length is measured from the bottom of the nock groove to the end of the shaft   (see diagram). This distance includes a portion of the nock, the nock insert or outsert (if any) and the  shaft length. The point is not included in the measurement. This is the length used in Easton's shaft selection charts. The optimum length of a finished arrow for a specific archer is determined by several factors including the draw length of the archer, the style of point, the configuration of the bow, and the archer’s shooting style. To determine your correct arrow length, use the following procedures.

 

Broadhead Straightness:

It is as important to have straight broadheads as it is to have straight arrows and straight nocks. Because the broadheadacts like a wing on the front of the shaft, straight alignment is critical to preventing "planing." The proper amount of fletching is important too in producing enough rotational velocity in the arrow to keep broadheads flying stable. If the broadhead is crooked, the fletching will not be able toadequately control the  broadhead and erratic and inaccurate arrow flight can result.

Checking for Broadhead Straightness

Once the broadhead is installed on the shaft, you can check for straightness using these simple methods. 1) Stand the arrow vertically on the point of the broadhead with the broadhead resting on a hard surface. With the index finger and thumb, encircle the arrow shaft near the fletching. With the other hand, spin the arrow on the point of the broadhead while keeping the arrow vertical. Visually inspect the spinning motion of the broadhead for any observable wobble. If the broadhead wobbles, it should be aligned.

2) Another method for checking broadhead straightness is to use the wheels of a commercially available arrow straightener to spin the arrow. Again, look for any observable wobble of the broadhead.

 

Positioning the Blade

The amount of rotation required to align the broadhead during flight depends on whether the broadhead is retractable or fixed, and whether it is a 2 blade, 3 blade, 4 blade or multi blade. The amount of rotation must also take into account the desired position of the blades in relation to fletching and blade position when the arrow nock is placed on the bowstring.

 

Repositioning the Insert

If the broadhead is installed into an RPS insert, unscrew the broadhead and replace it with a field point. Then heat the point enough to melt the hot melt so the RPS insert can be turned enough to re-index the blades to the desired position. For a 2-blade broadhead this would be a full half turn and for a 4-blade broadhead it would be a quarter turn. Once the position of the RPS insert has been changed, replace the broadhead in the insert and check again for straightness. Repeat the process until there is no perceptible wobble of the broadhead when spun. If the inserts are permanently installed with epoxy, this limits the ability to re-align the broadhead to the shaft. One possible solution for getting straight broadheads is to test different broadheads in the same set on the same arrow. Sometimes one broadhead can balance out small misalignments.

 

Arrow Tuning and Maintenance Guide the arrow rest.

This extra 1" provides a measure of safety by allowing small variances in draw length to occur without resulting in an arrow falling behind the arrow rest which could injure the archer if released. For target/field setups, this measurement is your Correct Arrow Length and is where your shaft should be cut (see figure 21). Hunting Arrows Shot from Bows With Cutout Sight Windows (Including Overdraws) If the bow's sight window is cutout far enough, and the arrow rest is set far enough away from the riser to allow a broadhead to be drawn back along side of the riser without contacting the bow, then the correct arrow length is measured from the most forward part of the arrow rest. As long as the broadhead clears the riser, the main concern with this style of setup is to be sure that the arrow does not get drawn to or past the arrow rest. Hunting Arrows Shot from Recurve Bows and Bows Without Cutout Sight Windows For hunting arrows with broadheads shot on bows without cutout sight windows, or on bows with windows not cutout far enough to allow a broadhead to be drawn along side of the riser, the broadhead should have at least one inch of clearance past the far side of the bow. Should a variance in draw length occur, which often happens in hunting circumstances, this gives the shaft enough additional length to keep the broadhead from being drawn back too far and contacting the riser. Contacting the riser could knock the arrow off of the rest. For this style of setup, have someone mark an extra-long arrow about 1" beyond the back (far side) of the bow while you’re at full draw (see figure 23). 1" clearance from the back of the point to the most forward portion of the arrow rest Correct  Arrow Length Fig. 22 Correct Arrow Length for hunting arrows with broadheads shot from bows WITH CUTOUT sight windows (cutout enough for broadhead clearance), with or without overdraw. Mark the arrow in front of the bow or arrow rest as specified by the appropriate illustration

Measuring Correct Arrow Length

Your Recommended Correct Arrow Length can be determined by drawing back an extra-long arrow and having someone mark the arrow. This distance is measured from the far side of the bow or from where the arrow contacts the most forward position of the arrow rest. Which method to use depends on the type of bow and arrow being set up. To determine the proper distance for a specific setup, find the appropriate illustration (Figures 21-23). From this you can measure your arrow length and know where the shaft should be cut.

 

Correct Arrow Length

1" Location where the arrow contacts the most forward portionof the arrow rest

Recommended Correct Arrow Length

Target or Field Arrows Shot from All Types of Bows (Including Overdraws) Target and field points are approximately the same diameter as the arrow shaft. These types of arrow points can be drawn past the far side of the bow, back along side of the riser or handle, without contacting the bow. The main concern with this style of setup is to be sure that the arrows does not get drawn past the arrow rest. The Correct Arrow Length for this type of setup should be determined by drawing back an extra-long arrow and having someone mark the arrow about 1" (25 mm) in front of where the arrow contacts the most forward position of

 

Correct Arrow Length for all target/field arrows shot from any bow WITH or WITHOUT cutout sight windows (including overdraws).

 

Cutting Shafts to Length

After determining Correct Arrow Length, follow the steps below. Note: Carbon shafts of all types must be cut carefully to prevent splintering of the carbon (graphite) fibers. Never use rotary tube cutters, hack saws or other methods that can damage the shaft or leave a rough cut. Always wear a NIOSH approved dust mask and safety glasses when cutting arrow shafts.

1. Use a high-speed abrasive-wheel cutoff tool designed specifically for cutting arrow shafts. The total length of the shaft plus nock system should equal your desired Correct Arrow Length.

2. Set the shaft support on the cutoff tool so the abrasivewheel only cuts about 1/3 through the diameter of the shaft.

3. While slowly rotating the shaft in the opposite direction as the cutoff wheel, gently push the shaft into the wheel and rotate the shaft until it is completely cut. Continue to slowly rotate the shaft two more revolutions to ensure a square cut.

 

Top Page

a.jpg (950 bytes)

 

Return to main Index

continue.jpg (1859 bytes)